2014浙江理工大学601数学分析考研大纲
考试基本要求考察考生掌握《数学分析》的基本内容和方法的熟练程度。考试基本内容第一章实数集与函数1实数:实数及性质;绝对值与不等式.2
第十一章反常积分
1反常积分概念:无穷限反常积分与收敛的定义;瑕点;无界函数反常积分(瑕积分)与收敛的定义.
2无穷限反常积分的性质与收敛判别:无穷限反常积分的性质;绝对收敛与条件收敛;比较法则;柯西判别法;狄利克雷判别法;阿贝尔判别法.
3瑕积分的性质与收敛判别:瑕积分的性质;绝对收敛与条件收敛;比较法则;柯西判别法;狄利克雷判别法;阿贝尔判别法.
第十二章数项级数
1级数的敛散性:数项级数敛散性概念;级数收敛的柯西收敛准则与收敛级数的若干性质.
2正项级数:正项级数收敛性的一般判别原则;比式判别法与根式判别法;积分判别法与拉贝判别法.
3一般项级数:交错级数与莱布尼兹判别法;绝对收敛级数与条件收敛级数及其性质;阿贝尔判别法与狄利克雷判别法.
第十三章函数列与函数项级数
1一致收敛性:函数列及其一致收敛性概念与判别法;函数项级数及其一致收敛概念与判别法.
2一致收敛的函数列与函数项级数的性质:连续性;可微(导)性;可积性.
第十四章幂级数
1幂级数:幂级数的收敛半径、收敛区间与收敛域;幂级数的性质;幂级数和函数的连续性、逐项可导(微)、逐项可积问题.
2函数的幂级数展开:泰勒级数(麦克劳林级数);几种常见初等函数的幂级数展开.
3欧拉公式.
第十五章傅里叶级数
1傅里叶级数:三角函数与正交函数系;傅里叶级数与傅里叶系数;以为周期函数的傅里叶级数;收敛定理;周期延拓;奇延拓与偶延拓;正弦级数与余弦级数.
2以为周期的函数的展开式:以为周期的函数的傅里叶级数;奇函数与偶函数的傅里叶级数.
3收敛定理的证明.
第十六章多元函数极限与连续
1平面点集与多元函数:平面点集与平面点集的完备性定理;二元函数的概念;多元函数的概念.
2二元函数的极限:二元函数极限概念;二元函数极限判别法与累次极限.
3二元函数的连续性:二元函数连续性概念及其性质;全增量与偏增量;有界闭域上连续函数的整体性质.
第十七章多元函数的微分学
1可微性:可微性与全微分;偏导数;可微性条件;切平面的定义;可微性几何意义及其应用;近似计算.
2多元复合函数微分法:多元复合函数求导法则;链式法则;多元复合函数的全微分.
3方向导数与梯度.
4泰勒定理与极值问题:高阶偏导数;多元函数的中值定理与泰勒公式;极值问题;黑赛(Hesse)矩阵.
- 2019-04-28六个月浙理工日语笔译MTI经验分享
- 2019-03-21独处守心,只要不放弃就有好结果!
- 2019-02-1618考研心理学312经验(授权代发)
- 2017-11-03【真题】浙江理工大学2007-2010年真题(下载)
- 2017-09-1218考研之浙江理工大学精华推荐帖汇总【入版必看】
- 2015-03-14浙江理工大学2015年硕士研究生招生简章及招生目录