2014浙江理工大学601数学分析考研大纲
考试基本要求考察考生掌握《数学分析》的基本内容和方法的熟练程度。考试基本内容第一章实数集与函数1实数:实数及性质;绝对值与不等式.2
第五章导数与微分
1导数概念:导数定义、单侧导数;导函数;导数的几何意义.
2求导法则:导数的四则运算;反函数导数;复合函数的导数(链式法则、对数求导法);基本导数法则与公式.
3参变量函数的导数.
4高阶导数:莱布尼茨公式.
5微分:微分的概念;微分运算法则;高阶微分;微分在近似计算中的应用.
第六章微分中值定理及其应用
1拉格朗日中值定理和函数的单调性:罗尔定理与拉格朗日定理;单调函数.
2柯西中值定理和不定式极限:柯西中值定理;不定式的极限.
3泰勒公式:带有佩亚诺余项的泰勒公式;带有拉格朗日余项的泰勒公式;在近似计算上的应用.
4函数的极值与最值:极值判别;最大值与最小值.
5函数的凸性与拐点:凸函数与凹函数;严格凸函数与严格凹函数;拐点.
6函数作图:函数作图的一般程序.
7方程的近似解:牛顿切线法.
第七章实数完备性
1实数完备性六个等价定理:闭区间套与闭区间套定理;聚点与聚点定理;有限覆盖与有限覆盖定理;确界定理;单调有界定理;柯西收敛准则.
2闭区间上连续函数整体性质的证明:有界性定理;最大、最小值定理;介值定理;一致连续性定理.
3上极限与下极限:最小聚点与下极限;最大聚点与上极限.
第八章不定积分
1不定积分概念与基本积分公式:原函数与不定积分;基本积分表;不定积分的线性运算法则.
2换元积分法与分部积分法:第一换元法与第二换元法;分部积分法.
3有理函数和可化为有理函数的不定积分:有理函数的积分;部分分式;几类可化为有理函数的积分.
第九章定积分
1定积分的概念:问题的提出;定积分的定义.
2牛顿-莱布尼兹公式.
3可积条件:可积的必要条件;达布上(下)和;上积分与下积分;可积的充要条件;可积函数类.
4定积分的性质:定积分的基本性质;积分(第一)中值定理.
5微积分学基本定理定积分计算(续):变限积分与原函数的存在性;积分(第二)中值定理;定积分的换元积分法和分部积分法.
第十章定积分的应用:微元法;平面图形面积计算;已知平行截面面积求体积;平面曲线弧长与曲率;旋转曲面的面积;定积分在物理中的某些应用(液体静压力、引力、功与平均功率等).
- 2019-04-28六个月浙理工日语笔译MTI经验分享
- 2019-03-21独处守心,只要不放弃就有好结果!
- 2019-02-1618考研心理学312经验(授权代发)
- 2017-11-03【真题】浙江理工大学2007-2010年真题(下载)
- 2017-09-1218考研之浙江理工大学精华推荐帖汇总【入版必看】
- 2015-03-14浙江理工大学2015年硕士研究生招生简章及招生目录