研招网 > 吉林研招网 > 中科院国家天文台长春人造卫星观测站 > 考研大纲

中科院长春人卫站考研大纲:603数学分析


  (五)无穷级数
  考试内容
  常数项级数及其收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域、和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法泰勒级数初等函数的幂级数展开式函数的幂级数展开式在近似计算中的应用
  考试要求
  1.理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件
  2.掌握几何级数与p级数的收敛与发散情况。
  3.掌握正项级数收敛性的各种判别法。
  4.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法。
  5.了解函数项级数的收敛域及和函数的概念。
  6.理解幂级数的收敛域、收敛半径的概念,并掌握幂级数的收敛半径及收敛域的求法。
  7.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
  8.掌握一些常见函数如ex、sinx、cosx、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
  9.会利用函数的幂级数展开式进行近似计算。
  (六)常微分方程
  考试内容
  常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降价的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程二阶常系数非齐次线性微分方程微分方程的简单应用
  考试要求
  1.了解微分方程及其阶、解、通解、初始条件和特解等概念。
  2.掌握变量可分离的微分方程的解法,掌握解一阶线性微分方程的常数变易法。
  3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换求解某些微分方程。
  4.会用降阶法解下列方程:y(n)=f(x),y″=f(x,y′)和y″=f(y,y′)
  5.理解线性微分方程解的性质及解的结构定理。了解解二阶非齐次线性微分方程的常数变易法。
  6.掌握二阶常系数齐次线性微分方程的解法。
  7.会解自由项为多项式、指数函数、正弦函数、余弦函数、以及它们的和与积的二阶常系数非齐次线性微分方程。
  8会用微分方程解决一些简单的应用问题。
  (七)行列式
  考试内容
  行列式的概念和基本性质行列式按行(列)展开定理
  考试要求
  1.了解行列式的概念,掌握行列式的性质.
  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
  (八)矩阵
  考试内容
  矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
  考试要求
  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
  5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
  (九)向量
  考试内容
  向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积
  考试要求
  1.了解向量的概念,掌握向量的加法和数乘运算法则.
  2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.了解向量组的极大线性无关组的概念和向量组秩的概念,会求向量组的极大线性无关组及秩.
  4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
  5.了解内积的概念.掌握向量内积的运算.

考研帮最新资讯更多

考研帮地方站

你可能会关心:

查看目标大学的更多信息

分数线、报录比、招生简章
一个都不能错过

× 关闭