研招网 > 湖南研招网 > 湖南大学 > 导师介绍

湖南大学机械与运载工程学院导师介绍:张见明


  姓名:张见明  职称:教授  学位:工学博士

  性别:男   出生年月:1965年
  
  籍贯:湖北孝昌县  通讯地址:湖南大学机械与汽车工程学院,410082

  E-mail: zhangjianm@gmail.com   专业领域:车辆工程、固体力学、计算力学

  主要研究方向:汽车CAE技术、车辆结构仿真与优化、计算机图形算法与三维可视化、CAE软件开发及其在车身设计中的应用、数值计算方法(有限元、边界元、无网格法、快速算法、多尺度分析)

  主要学习及工作经历:

  1985.9–1989.7 西安交通大学工程力学系,大学本科

  1989.7–1995. 5 江汉第四石油机械厂,助理工程师

  1995. 5–2002.10 沙市石油钢管厂,工程师

  1998. 9–2000. 4 清华大学工程力学系,硕士研究生

  2000. 4–2002. 7 清华大学工程力学系,博士研究生

  2002.10–2005. 8 日本信州大学机械系统工程系,产学官连携研究员

  2005. 9–2007. 8 日本学术振兴会(JSPS)特别研究员

  2007.7–至今 教授, 湖南大学机械与汽车工程学院和汽车车身先进设计制造国家重点实验室

  主要社会兼职:

  以下国际杂志的论文审稿人:

  Journal of Computational Physics

  International Journal for Numerical Methods in Engineering

  Computational Mechanics

  International Journal of Solids and Structures

  ASME Journal of Fluids Engineering

  Engineering Analysis with Boundary Elements

  Numerical heat transfer

  项目经历:

  1. 混凝土坝温度控制仿真和裂缝扩展计算程序的研究和工程应用,主研,起止时间:2007-2010。

  2. 日本学术振兴会项目(JSPS ID No. P05075):“边界类型无网格数值方法开发及其在线性和非线性问题中的应用,主研,起止时间:2005-2007, 经费:967万日元。

  3. 知的CLUSTER创成事业-远藤碳纳米管项目,分项主研,起止时间:2002-2005, 经费:13亿日元。

  4. 国家自然科学基金项目:“边界元快速算法及其工程应用”,参与研究,项目批准号:10172053,起止时间:2002-2004,经费:30万元。

  获奖:

  日本科学振兴会 (JSPS) 研究员奖, 2004

  清华大学优秀博士论文奖, 清华大学, 2004

  林家翘应用数学奖, 清华大学, 2001

  研究经历及成果:

  1. 边界类型无网格数值方法开发及其在线性和非线性问题中的应用

  (日本科学振兴会. 2005-2007)

  2. 碳纳米复合材料热性质的数值仿真

  (知的远藤项目,日本文部科学省. 2002-2005)

  3. 一种新的边界类型无网格法——杂交边界点法

  (博士论文, 2000-2002)

  4. 螺旋焊管成形过程的仿真模拟及工艺参数优化 (1999)

  5. 用多域边界元法分析刚架结构的应力 (硕士论文, 1998-2000)

  6. 玻璃钢抽油杆接头的结构改进 (1997-1998)

  7. 玻璃钢抽油杆包装箱的有限元分析及结构改进 (1997)

  8. 任意形状钢窗型材截面性质的C++计算程序 (1996-1997)

  9. 建筑外用电梯的有限元分析 (1996)

  10. Instron 疲劳试验机 (操作员和管理员, 1995-1998)

  11. 沙漠橇装泵的研制与开发 (国家级重大项目, 1994-1995)

  12. 修井机游车大钩的应力测试及有限元分析 (1995)

  13. 修井机井架结构改进 (1993-1994)

  14. 抽油机支架结构改进 (1991-1992)

  15. 抽油机减速箱残余应力测试及振动时效研究 (1990)

  16. 大型机械结构应力测试 (1989-1995)

  17. 双相合金低周疲劳应力应变响应的有限元分析

  (学士论文, 1988-1989)

  文章发表:

  杂志文章

  [1] JM Zhang, M Tanaka, Adaptive Spatial Decomposition in Fast Multipole Method, Journal of Computational Physics, Vol.226, pp. 17–28, 2007

  [2] JM Zhang, M Tanaka, ZH Yao, Singular and Regular Implementations of Hybrid Boundary Node Method,清华大学学报(英文版),in press

  [3] JM Zhang, M Tanaka, Fast HdBNM for large-scale thermal analysis of CNT-reinforced composites, Computational Mechanics, published online: 22 Dec. 2006

  [4] JM Zhang, M Tanaka, Systematic study of thermal properties of CNT composites by a fast multipole hybrid boundary node method, Engineering Analysis with Boundary Elements, published online: 5 July 2006

  [5] V Singh, M Tanaka, JM Zhang, M Endo, Evaluation of Effective Thermal Conductivity of CNT-based Nano-Composites by Meshless EFG Method, International Journal of Numerical Methods for Heat and Fluid Flow, in press

  [6] JM Zhang, M Tanaka, An effective tree data structure in Fast Multipole Method, Transactions of the Japan Society for Computational Methods in Engineering, Vol.6, pp. 17-22, 2006

  [7] M Tanaka, JM Zhang, H Shirasaka, Application of Hybrid Boundary Node method (HdBNM) to steady-state heat conduction in inhomogeneous problem, Transactions of the Japan Society for Computational Methods in Engineering, Vol.6, pp. 23-26, 2006, (日文)

  [8] M Tanaka, JM Zhang, Large-scale thermal analysis of composites embedded with CNTs of arbitrary shapes and random distribution, Transactions of the Japan Society for Computational Methods in Engineering, Vol.5, pp.107-112, 2005

  [9] JM Zhang, M Tanaka, M Endo, The hybrid boundary node method accelerated by fast multipole method for 3D potential problems, International Journal for Numerical Methods in Engineering, Vol. 63, pp. 660-680, 2005

  [10] JM Zhang, M Tanaka, M Endo, Accelerating multi-domain hybrid boundary node method with fast multipole method, Transactions of the Japan Society for Computational Methods in Engineering, Vol.5, pp.7-12, 2005

  [11] JM Zhang, M Tanaka, T Matsumoto, Meshless analysis of potential problems in three dimensions with the hybrid boundary node method, International Journal for Numerical Methods in Engineering, Vol. 59, pp. 1147-1160, 2004

  [12] JM Zhang, M Tanaka, T Matsumoto, A simplified approach for heat conduction analysis of CNT-based nano-composites, Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 5597-5609, 2004

  [13] JM Zhang, M Tanaka, T Matsumoto, A Guzik, Heat conduction analysis in bodies containing thin-walled structures by means of Hybrid BNM with an application to CNT-based composites, JSME International Journal Series A: Solid Mechanics and Material Engineering. Vol. 47, No. 2, pp. 181-188, 2004

  [14] JM Zhang, M Tanaka, A tree data structure for MLS approximation on surfaces, Transactions of the Japan Society for Computational Methods in Engineering, Vol.4, pp.43-46, 2004

  [15] JM Zhang, M Tanaka, M Endo, Fast hybrid BNM analysis of heat conduction properties of CNT-based composites, Transactions of JASCOME, Journal of Boundary Element Methods, Vol.21, pp.39-44, 2004

  [16] JM Zhang, ZH Yao, The meshless regular hybrid boundary node method for three dimensional linear elasticity, Engineering Analysis with Boundary Elements. Vol. 28, pp. 525-534, 2004

  [17] JM Zhang, ZH Yao, MTanaka, The meshless regular hybrid boundary node method for 2-D linear elasticity, Engineering Analysis with Boundary Elements. Vol. 27, pp. 259-268, 2003

  [18] M Tanaka, JM Zhang, T Matsumoto, A Guzik, Evaluation of heat conducting properties of curved-CNT composites by the hybrid BNM, Transactions of the Japan Society for Computational Methods in Engineering, Vol.3, pp.45-48, 2003

  [19] M Tanaka, JM Zhang, T Matsumoto, Boundary-type meshless solutions of potential problems: Comparison between singular and regular formulations in hybrid BNM, Transactions of JASCOME, Journal of Boundary Element Methods, Vol.20, pp.21-26, 2003

  [20] JM Zhang, ZH Yao, H Li, A hybrid boundary node method, International Journal for Numerical Methods in Engineering. Vol. 53, pp. 751-763, 2002

  [21] JM Zhang, ZH Yao, Analysis of 2-D thin structures by the meshless regular hybrid boundary node method, Acta Mechanica Solida Sinica, Vol.15, No.1, pp. 36-44, 2002

  [22] JM Zhang, ZH Yao, Meshless regular hybrid boundary node method, Computer Modeling in Engineering & Sciences. 2:307-318, 2001. (referred in: " The Meshless Local Petrov- Galerkin ( MLPG ) Method", by S. N. Atluri & S. Shen, Tech Science Press, 2002 )

  [23] 李宏, 张见明, 螺旋焊管成形过程的有限元分析, 石油机械. 29卷, 第9期, 30-32页, 2001

  [24] 张见明, 姚振汉, 李宏, 二维位势问题的杂交边界点法, 重庆建筑大学学报. 22卷, 第6期, 105-107页, 2000

  [25] 张见明, 修井机井架危险截面部位的结构改进, 石油机械, 26卷, 第6期, 40-42页, 1998

  [26] 张见明, 修井机井架的应力分析及结构改进, 石油矿场机械, 27卷, 第2期, 17-21页, 1998

  [27] 张见明, 石油压裂车泵头体应力集中的原因和规律, 上海力学, 18卷, 第4期, 343-347页, 1997

  [28] 张见明, 用方案选择法改进抽油机支架结构, 石油机械, 25卷, 第6期, 30-32页, 1997

  会议文集

  [1] J. M. Zhang, Masa. Tanaka, Effect of tree data structures and p-adaptivity on fast multipole method, In: H. Noguchi and M. Kitamura (eds.) Proceedings of the second International Conference on Computational Methods, 4-6 April 2007, Hiroshima, pp 273, 2007

  [2] Masa. Tanaka, J. M. Zhang, Study on thermal properties of CNT-based composites by the Hybrid Boundary Node Method combined with a simplified approach, In: Z.H. Yao, M.W. Yuan and W.X. Zhong (eds.), Proceedings of the Sixth World Congress of Computational Mechanics, 5-10 Sept. 2004, Beijing, China, Tsinghua University Press, Springer, Vol.1, pp. 667-672, 2004.

  [3] J. M. Zhang, Masa. Tanaka, The hybrid boundary node method accelerated by the fast multipole expansion, In: Z.H. Yao, M.W. Yuan and W.X. Zhong (eds.), Proceedings of the Sixth World Congress of Computational Mechanics, 5-10 Sept. 2004, Beijing, China, Tsinghua University Press, Springer, Vol.1, pp. 770-775, 2004

  [4] H. T. Wang, J. M. Zhang, Z. H. Yao, S. Cen, The evaluation of singular integrals in MLS-based and RBF-based boundary-only meshless methods(abstract), In: Z.H. Yao, M.W. Yuan and W.X. Zhong (eds.), Proceedings of the Sixth World Congress of Computational Mechanics, 5-10 Sept. 2004, Beijing, China, Tsinghua University Press, Springer, Vol.2, pp. 378, 2004

  [5] Masa. Tanaka, J. M. Zhang, M. Toshiro, Multi-domain hybrid BNM for prediction of thermal properties of CNT composites. In: T. Honma and Masa. Tanaka(eds.), Proceedings of the First Asia-Pacific International Conference on Computational Methods in Engineering (ICOME 2003, Sapporo, Japan), pp. 3-12, 2003

  [6] J. M. Zhang, Z. H. Yao, Masa. Tanaka, A Boundary-type meshless method for analysis of thin structures, Transactions of JASCOME, Journal of Boundary Element Methods, Vol.19, pp.59-64, 2002

  [7] J. M. Zhang, Z. H. Yao, Regular Hybrid Boundary Node Method, in: C. M. Wang, G. R. Liu and K. K. Ang (eds.), Proceedings of the 2nd International Conference on Structural Stability and Dynamics, Singapore, pp. 16-18, 2002

  [8] J. M. Zhang, Z. H. Yao, A Boundary-type Meshless Method for 3D Potential Problems, in: Zhenhan Yao and M. H. Aliabadi(eds.), Proceedings of the Third International Conference on Boundary Element Techniques (BETeq, Beijing, 2002), TUP/Springer, pp. 298-302, 2002

  [9] J. M. Zhang, Z. H. Yao, A new meshless regular hybrid boundary node method. In: K.J. Bathe (eds.), Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, Boston, Massachusetts. Vol.2:1680-1682, 2001

  [10] 张见明, 姚振汉, 一种新型无网格法——杂交边界点法. 见:袁明武, 孙树立编, 工程与科学中的计算力学. 北京:北京大学出版社, 339-343, 2001

  会议发言:

  1. “Effect of tree data structures and p-adaptivity on fast multipole method” In symposium: International Conference on Computational Methods 2007, Hiroshima, Japan, April 4-6, 2007

  2. “Adaptive Spatial Decomposition in Fast Multipole Method” In symposium: Second Asia-Pacific International Conference on Computational Methods in Engineering 2006, Hefei, Anhui, China, Nov. 14-16, 2006

  3. “A new adaptive node-cluster algorithm in Fast Multipole Method” In symposium: The 7th World Congress on Computational Mechanics, Los Angeles, California, USA, July 16-22, 2006

  4. “Large-scale thermal analysis of thermal properties of CNT/polymer composites with various CNT shapes and distribution” (keynote) In symposium: The 7th World Congress on Computational Mechanics, Los Angeles, California, USA, July 16-22, 2006

  5. “Meshless and fast simulation of thermal behavior of CNT-based composites” In symposium: IABEM 2006 Conference, Graz, AUSTRIA, July 10-12, 2006

  6. “Hybrid Boundary Node Method (HdBNM) applied to the steady-state heat conduction problem of functionally graded materials” In symposium: IABEM 2006 Conference, Graz, AUSTRIA, July 10-12, 2006

  7. “Shape Optimization of CNT for Enhancing Thermal Conductance of CNT-based Composites” In symposium: JSME Hokuriku-Shinetsu Branch 43th Conference, Nagano, Japan, Mar. 9, 2006

  8. “An effective tree data structure in Fast Multipole Method” In symposium: JASCOME CETC2006, Nagoya, Japan, Jun. 30, 2006

  9. “Analysis of Steady-state Heat Conduction in Functionally Graded Materials via Boundary-type Meshless Method (HdBNM)” In symposium: JSME Hokuriku-Shinetsu Branch 43th Conference, Nagano, Japan, Mar. 9, 2006

  10. “Large-scale thermal analysis of composites embedded with CNTs of arbitrary shapes and random distribution” In symposium: Symposium on Advanced Computational Methods in Engineering 2005, Tokyo, Japan, Dec. 9, 2005

  11. “Advanced simulation of CNT composites by a fast multipole hybrid boundary node method” In symposium: JSME 16th Computational Mechanics Congress, Tsukuba, Japan, Nov. 19-21, 2005

  12. “Accelerating multi-domain hybrid boundary node method with fast multipole method” In symposium: JASCOME CETC2005, Nagoya, Japan, Jun. 24, 2005

  13. “Fast hybrid BNM analysis of heat conduction properties of CNT-based composites” In symposium: JASCOME 21st Symposium on Boundary Element Methods, Kyoto, Japan, Dec. 2, 2004

  14. “Boundary-only and fast meshless analysis of 3D potential problems” (keynote) In symposium: JSME 17th Computational Mechanics Congress, Sendai, Japan, Nov. 16-19, 2004

  15. “Study on thermal properties of CNT-based composite by the Hybrid Boundary Node Method combined with a simplified mathematic model” (keynote) In symposium: WCCM VI in conjunction with APCOM’04, Beijing, China, Sept. 5-10, 2004

  16. “Hybrid Boundary Node Method accelerated by Fast Multipole Method for 3D potential problems” (keynote) In symposium: WCCM VI in conjunction with APCOM’04, Beijing, China, Sept. 5-10, 2004

  17. “A tree data structure for MLS approximation of boundary variables in Hybrid BNM” In symposium: JASCOME CETC2004, Nagoya, Japan, Jul. 9, 2004

  18. “Investigation of the equivalent heat conductivity of CNT-based composite using a simplified approach” In symposium: JSME 16th Computational Mechanics Congress, Kobe, Japan, Nov. 22-24, 2003

  19. “Boundary-type meshless solutions of potential problems: Comparison between singular and regular formulations in Hybrid BNM” In symposium: JASCOME 20th Symposium on Boundary Element Methods, Nagoya, Japan, Dec. 5, 2003

  20. “Multi-domain Hybrid BNM for prediction of thermal properties of CNT composites” In symposium: First Asia-Pacific International Conference on Computational Methods in Engineering 2003, Sapporo, Japan, Nov. 5-7, 2003

  21. “Study on heat conduction properties of CNT composites” In symposium: M&M2003 Material Mechanics Conference, Toyama, Japan, Sept. 24-26, 2003

  22. “An application of the meshless BEM to evaluation of thermal properties of CNT composites” In symposium: Mechanical Engineering Congress, 2003 Japan (MECJ-03), Tokushima, Japan, Aug. 5-8, 2003

  23. “Evaluation of heat conducting properties of curved-CNT composites by the hybrid BNM” In symposium: JASCOME CETC2003, Tokyo, Japan, Jun. 20, 2003

  24. “The hybrid boundary node method for 3D potential problems” (Invited) In symposium: the fourth forum of Japan Society for Computational Methods in Engineering, Tokyo, Japan, March 28, 2003

  25. “A boundary-type meshless method for analysis of thin structures” In symposium: JASCOME 19th Symposium on Boundary Element Methods, Tokyo, Japan, Dec. 6, 2002

  26. “一种新型无网格法—杂交边界点法” 中国计算力学大会, 广州, 2001年12月5-8日

  27. “二维位势问题的杂交边界点法” 第六届工程中边界元法会议, 重庆, 2000年12月4-7日

  Teaching Philosophy:

  Huineng, one of the greatest Buddhist monks in Chinese history, pointed to the moon with his index finger, and said to the nun Wuzangni: “My finger is indicating to you where the moon is. But by only looking at my finger, you wound never see the moon.”

  According to my observation, there are two main types of motivation for learning. One is to obtain higher grades in examinations; the other is to understand nature because of an inner interest and desire to think creatively. Different motivation leads to a different learning attitude and approach. Students with the first type of motivation seldom relate the theory they learnt to their experience. They would just try to memorize and recognize patterns in well-defined problems, and then to fit those patterns into any given problems. Using this approach, they may be able to easily score highly in examinations without really understanding the concepts. However, after examination they would return all that they have learnt (or more precisely, memorized) to their teachers. On the contrary, the students with the second type of motivation for learning have built in their brain a systematic cognitive structure that represents an image of nature. Whenever they learn, they use new knowledge to expand and simplify the structure. (Science has the advantage of using relatively few concepts and rules to describe nature.) Therefore, the knowledge they have learnt, old and new, theoretical and empirical, is merged and integrated into one. To them, textbook is merely a means for acquiring knowledge, not the end.

  Based on the observation above, I believe that a good teacher should strive to achieve the following objectives.

  n Create a cooperative but challenging atmosphere in order to nurture students’ interest in nature and love of learning. Encourage the joy of grasping a new idea. Too much focus on grading details may kill the joy of learning.

  n Discourage rote learning. Be clear, fair, and consistent in administrative and class management so that students are encouraged to learn.

  n Visualize abstract concepts, explain how concepts are derived from natural phenomena, and develop intuitive feelings for concepts. (Mechanics concepts are usually abstract, and in my opinion, creative thinking is impossible without intuition.)

  n Whenever possible, engage the students in research, letting them not only see established results, but also allow them to experience the thrill of discovering new ones.  

考研帮最新资讯更多

考研帮地方站

你可能会关心:

查看目标大学的更多信息

分数线、报录比、招生简章
一个都不能错过

× 关闭