研招网 > 上海研招网 > 上海海洋大学 > 考研大纲

2013年上海海洋大学研究生《高等数学》考试大纲


  第三单元一元函数积分学
  原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和性质,积分中值定理,变上限定积分及其导数,NewTon-Leibniz公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式、简单无理函数的积分,广义积分的概念及计算,定积分的应用,定积分的近似计算法。
  第四单元常微分方程
  常微分方程的概念,微分方程的解、通解、初始条件和特解;变量可分离方程,一阶线性微分方程,齐次方程,Bernoulli方程,可降阶的高阶微分方程(y’’=f(x),y’’=f(x,y’),y”=f(y,y”));线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程。
  第五单元多元函数微分学
  向量的概念,曲面方程的概念,平面方程、直线方程及其求法,点到点、直线、平面的距离,母线平行于坐标轴的柱面。
  多元函数的概念,二元函数的极限和连续的概念,有界闭域上连续函数的性质,偏导数;全微分的概念,复合函数,隐函数的求导法,二阶偏导数,多元函数极值的概念,多元函数极值的必要条件,极值的求法。
  第六单元多元函数积分学
  二重积分的概念、重积分的性质,二重积分(直角坐标,极坐标)的计算,两类曲线积分的概念,重积分的几何应用。
  第七单元幂级数
  常数项级数的收敛与发散的概念,收敛幂级数的和的概念,收敛的基本性质与收敛的必要条件;几何级数与P级数;正项级数的比较审敛法,比值审敛法,根值审敛法,交错级数的Leibniz定理;绝对收敛与条件收敛,函数项级数的收敛域与和函数的概念;幂级数的收敛半径、收敛区间和收敛域,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法。

考研帮最新资讯更多

考研帮地方站

你可能会关心:

查看目标大学的更多信息

分数线、报录比、招生简章
一个都不能错过

× 关闭