东南大学管理科学与工程系导师介绍:刘新旺
►个人简介刘新旺男,1968年生。东南大学管理科学与工程系,博士,教授,博士生导师。办公地点:九龙湖经管楼B-408联系电话:+86-25-86212818电子邮箱
►专著及论文
[1] Liu X.W. and Wang Y.M., An analytical solution method for the generalized fuzzy weighted average problem. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2013. 21(3): 455-480.
[2] Liu X.W. and Yu S., On the Stress Function-Based OWA Determination Method With Optimization Criteria. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2012. 42(1): 246-257.
[3] Liu X.W., Pan Y.W., Xu Y.J., and Yu S., Least square completion and inconsistency repair methods for additively consistent fuzzy preference relations. Fuzzy Sets and Systems, 2012. 198: 1-19.
[4] Liu X.W., Mendel J.M., and Wu D.R., Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements. Information Sciences, 2012. 184(1): 75-91.
[5] Liu X.W., Mendel J.M., and Wu D.R., Analytical solution methods for the fuzzy weighted average. Information Sciences, 2012. 187: 151-170.
[6] Liu X.W., Models to determine parameterized ordered weighted averaging operators using optimization criteria. Information Sciences, 2012. 190: 27-55.
[7] Liu X., Continuous Karnik-Mendel Algorithms and Their Generalizations, in Advances in Type-2 Fuzzy Sets: Theory and Applications, A. Sadeghian, J.M. Mendel, and H. Tahayori, Editors. 2012, Springer.
[8] Liu X., Models to determine parameterized ordered weighted averaging operators using optimization criteria. Information Sciences, 2012. 190(1): 27-55.
[9] Liu X.W. and Mendel J.M., Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set. IEEE Transactions on Fuzzy Systems, 2011. 19(4): 652-665.
[10] Liu X., A Review of the OWA Determination Methods: Classification and Some Extensions, in Recent Developments in the OrderedWeighted Averaging Operators: Theory and Practice, R.R. Yager, J. Kacprzyk, and G. Beliakov, Editors. 2011, Springer-Verlag: Berlin Heidelberg. p. 49-90.
[11] Liu X.W., The orness measures for two compound quasi-arithmetic mean aggregation operators. International Journal of Approximate Reasoning, 2010. 51(3): 305-334.
[12] Liu X.W., The relationships between two variability and orness optimization problems for owa operator with RIM quantifier extensions. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2010. 18(5): 515-538.
[13] Liu X., The orness measures for two compound quasi-arithmetic mean aggregation operators. International Journal of Approximate Reasoning, 2010. 51(3): 305-334.
[14] Liu X., The relationships between two variability and orness optimization problems for OWA operator with RIM quantifier extensions. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2010. 18(5): 515-538.
[15] Liu X.W. and Lou H.W., On the equivalence of some approaches to the OWA operator and RIM quantifier determination. Fuzzy Sets and Systems, 2008. 159(13): 1673-1688.
[16] Liu X.W. and Han S.L., Orness and parameterized RIM quantifier aggregation with OWA operators: A summary. International Journal of Approximate Reasoning, 2008. 48(1): 77-97.
[17] Liu X.W., A general model of parameterized OWA aggregation with given orness level. International Journal of Approximate Reasoning, 2008. 48(2): 598-627.
[18] Xinwang Liu H.L., Parameterized approximation of fuzzy number with minimum variance weighting functions. Mathematical and Computer Modelling, 2007. 46(11-12): 1398–1409.
[19] Liu X.W., The solution equivalence of minimax disparity and minimum variance problems for OWA operators. International Journal of Approximate Reasoning, 2007. 45(1): 68-81.
[20] Liu X., Parameterized defuzzification with maximum entropy weighting function-Another view of the weighting function expectation method. Mathematical and Computer Modelling, 2007. 45(1-2): 177-188.
[21] Liu X., Parameterized additive neat OWA operators with different orness levels. International Journal of Intelligent Systems 2006. 21(10): 1045-1072.
[22] Liu X.W., Some properties of the weighted OWA operator. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2006. 36(1): 118-127.
[23] Liu X.W., On the maximum entropy parameterized interval approximation of fuzzy numbers. Fuzzy Sets and Systems, 2006. 157(7): 869-878.
[24] Liu X.W., An orness measure for quasi-arithmetic means. IEEE Transactions on Fuzzy Systems, 2006. 14(6): 837-848.
[25] Liu X., On the properties of equidifferent OWA operators. International Journal of Approximate Reasoning, 2006. 43(1): 90-107
- 2021-07-1219东南大学国际商务
- 2021-04-1919东大经管学院管科
- 2021-02-14东南大学生医考研 初试340擦线党上岸经验贴
- 2021-02-032019年东南大学公卫考研初试复试经验贴
- 2020-12-0316年考上东大土木管工的经验贴,传承回馈啦~
- 2020-04-2319年东大艺术学理论考研专业第一经验贴
- 2020-04-17东南大学翻译硕士mti2019复试回忆贴
- 2020-04-1319东南大学心理学学硕复试题目回忆
- 2020-04-1119年东大MTI翻译硕士经验贴
- 2020-03-282019东南大学国际商务专硕考研回顾(19初复试真题、答疑