研招网 > 广东研招网 > 暨南大学 > 考研大纲

2015年暨南大学070105运筹学与控制论考研大纲

    考研网快讯,据暨南大学研究生院消息,2015年暨南大学运筹学与控制论考研大纲已发布,详情如下:

  暨南大学数学学科2015年硕士研究生入学考试自命题科目
  《数学分析》
  考试大纲

  本《数学分析》考试大纲适用于暨南大学数学学科各专业(基础数学、概率论与数理统计、应用数学)硕士研究生入学考试。数学分析是大学数学系本科学生的 最基本课程之一,也是大多数理工科专业学生的必修基础课。它的主要内容包括极限与连续、一元函数的微分学、一元函数的积分学、无穷级数、多元函数的微分学 与积分学、含参变量积分。要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。
  一、考试的基本要求
  要求考生比较系统地理解数学分析的基本概念,掌握数学分析的基本理论、基本思想和方法,具有一定的综合运用所学的知识分析问题和解决问题的能力,以便为以后继续学习和从事科研奠定坚实的分析基础。
  二、考试内容
  1.极限与连续
  (1)极限的ε-δ、ε-N定义及其证明;极限的性质及运算、无穷小量的概念及基本性质;
  (2)函数的连续性及一致连续性概念,函数的不连续点类型,连续函数的性质的证明及其应用;
  (3)上、下极限概念,实数集完备性的基本定理及其应用;
  (4)二元函数的极限的定义及性质,重极限与累次极限概念,二元函数的连续性概念及性质;
  (5)数列极限的计算,一元与二元函数极限的计算。
  2.一元函数的微分学
  (1)函数的导数与微分概念及其几何意义,函数的可导、可微与连续之间的关系;
  (2)求函数(包括复合函数及分段函数)的各阶导数与微分;
  (3)Rolle中值定理、Lagrange中值定理、Cauchy中值定理、Taylor定理及其应用;
  (4)用导数研究函数的单调性、极值、最值和凸凹性;
  (5)用洛必达法则求不定式极限。
  3.一元函数的积分学
  (1)不定积分的概念及不定积分的基本公式,换元积分法与分部积分法,求初等函数、有理函数和可化为有理函数的不定积分;
  (2)定积分的概念,可积条件与可积函数类;
  (3)定积分的性质,微积分学基本定理,定积分的换元积分法和分部积分法,积分第一、二中值定理及其应用;
  (4)用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积已知的立体体积、变力做功和物体的质量;
  (5)反常积分的概念及性质,两类反常积分的比较判别法、阿贝耳判别法和狄
  立克雷判别法,两类反常积分的计算。
  4.无穷级数
  (1)数项级数敛散性的概念及基本性质;
  (2)正项级数收敛的充分必要条件、比较原则、比式判别法、根式判别法与积
  分判别法;
  (3)一般数项级数绝对收敛与条件收敛的概念及其相互关系,绝对收敛级数的
  性质,交错级数的莱布尼兹判别法,一般数项级数的阿贝耳判别法和狄立
  克雷判别法;
  (4)函数项级数一致收敛性的概念以及判断一致收敛性的Weierstrass判别法、
  Cauchy判别法、Abel判别法和Dirichlet判别法;
  (5)幂级数的收敛半径、收敛域的求法,幂级数的性质与运算;函数的幂级数
  展开及幂级数的和函数的性质与求法;
  (6)周期函数的Fourier级数展开及Fourier级数收敛定理。
  5.多元函数的微分学与积分学
  (1)多元函数的偏导数和全微分的概念、几何意义与应用,连续、可微与可偏
  导之间的关系,多元函数的偏导数(包括高阶偏导)与全微分的计算,方
  向导数与梯度的定义与计算;
  (2)多元函数的无条件极值、中值定理与泰勒公式;
  (3)隐函数存在定理及求隐函数的偏导数;
  (4)曲线的切线与法平面、曲面的切平面与法线的求法;
  (5)重积分、曲线积分和曲面积分的概念与计算;
  (6)格林公式、高斯公式和斯托克斯公式及其应用。
  6.含参变量积分
  (1)含参变量正常积分的概念及性质;
  (2)含参变量反常积分一致收敛的概念及其判别法,一致收敛的含参变量反常
  积分的性质及其应用。
  三、考试题型
  填空题、单项选择题、计算题、证明题。
  四、考试方法和考试时间
  采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
  五、主要参考教材
  (1)《数学分析》(上、下册),华东师范大学数学系编,2001年6月第3版,
  2007年5月第17次印刷,高等教育出版社.
  (2)《数学分析》(上、下册),复旦大学数学系陈传璋等编,1983年11月
  第2版,2003年5月第23次印刷,高等教育出版社.

考研帮最新资讯更多

考研帮地方站

你可能会关心:

查看目标大学的更多信息

分数线、报录比、招生简章
一个都不能错过

× 关闭