2015年五邑大学0701数学考研大纲
考研网快讯,据五邑大学研究生院消息,2015年五邑大学数学考研大纲已发布,详情如下:五邑大学2015年硕士学位研究生招生《高等代数》课程考试大纲
考研网快讯,据五邑大学研究生院消息,2015年五邑大学数学考研大纲已发布,详情如下:
五邑大学2015年硕士学位研究生招生
《高等代数》课程考试大纲
一、 课程的性质,目的和任务
高等代数是数学(数学与应用数学,数学教育)专业的一门重要基础课程。通过本课程的教学,应培养学生良好的数学素养,打下较扎实的代数学理论基础,提高学生的抽象思维的能力和逻辑推理能力,并掌握较系统的代数基础知识,为学习后继课程服务。
二、 基本要求
这门课程大致分为两部分:多项式理论和线性代数。前者以数域上一元多项式的因式分解理论为中心内容;后者主要讲授线性方程组的理论,向量空间和线性变换。本课程应着重于基本理论的讲授和基本技能的培养和训练,不适求内容上的完备和全面.
三、 考试范围
(一)多项式理论
1. 数域 (A)
2. 整除的概念 (A)
3. 最大公因式. (A)
4. 因式分解定理. (A)
5. 重因式. (A)
6. 多项式函数. (A)
8. 复系数与实系数多项式的因式分解. (A)
9. 有理系数多项式. (A)
*10.多元多项式. (B)
*11.对称多程式. (B)
(二) 行列式
1. 排列. (A)
2. n阶行列式的定义和性质. (A)
3. 行列式的依行和依列展开. (A)
4. 行列式的计算. (A)
5. Crammer法则(克莱姆法则). (A)
6. Laplace(拉普拉斯)定理. 行列式的乘法规则. (A)
(三)线性方程组
1. 线性方程组的消元法. (A)
2. n维向量空间 (A)
3. 线性相关性. (A)
4. 矩阵的秩. (A)
5. 线性方组有解的判定定理. (A)
6. 线性方程组解的结构. (A)
7. 二元高次方程. (B)
(四) 矩阵
1. 矩阵的概念与运算. (A)
2. 矩阵乘积的行列式与秩. (A)
3. 矩阵的逆. (A)
4. 矩阵的分块. (A)
5. 初等矩阵. (A)
(五) 二次型
1. 二次型的矩阵表示. (A)
2. 标准形. (A)
3. 唯一性. (A)
4. 正定二次型. (A)
(六) 线性空间
1. 线性空间的定义与简单性质. (A)
2. 维数.基与坐标. (A)
3. 基变换. (A)
4. 线性子空间 (A)
5. 子空间的交与和. (A)
6. 子空间的直和. (A)
7. 线性空间的同构. (A)
(七) 线性变换
1. 定义和例子 (B)
2. 线性变换的运算. (A)
3. 线性变换的矩阵. (A)
4. 特征值与特征向量. (A)
5. 对角矩阵. (A)
6. 线性变换的值域与核. (A)
7. 不变子空间. (A)
8. Jordan标准形介绍. (B)
(八) 入一矩阵
1. 入一矩阵. (A)
2. 入一矩阵在初等变换下的标准形. (A)
3. 不变因子. (A)
4. 矩阵相似条件. (A)
5. 初等因子. (A)
*6.Jordan标准形的理论推导. (C)
(九) 欧几里得空间
1. 定义与基本性质. (A)
2. 标准正交基. (A)
3. 同构. (A)
4. 正交变换. (A)
5. 子空间. (A)
6. 对称矩阵的准形. (A)
四、主要教材和参考书
1. 北京大学数学力学系,高等代数(第二版),高教出版社。
2. 张禾瑞,郝炳新, 高等代数,高教出版社。
3. 杨子胥,高等代数习题解(上,下), 山东科技大学出版社.
五、 说明
1、(A):表示对相关内容达到“掌握”层次;(B): 表示对相关内容达到“理解”层次;(C): 表示对相关内容达到“了解”层次。
2、北大教材的习题分为两部分: 基本题和补充题。对于学生要求掌握书上的基本题而补充题大部分难度较大,技巧性较强,不要求学生能全部独立完成。但基本题必需会独立完成解答。 “双线性函数”和入一矩阵等打星号的内容可不做为考试要求。
《数学分析》考试大纲
一、课程性质、目的和任务
数学分析是本科数学学科各专业的基础课程,通过本课程的学习,培养学生具备比较扎实的函数理论、严谨逻辑思维能力、锻炼学生的空间想象力、掌握应用函数理论解决相关实际问题的能力,为最终使学生具有较好的数学素质打下坚实的基础。
二、基本要求
掌握实数的完备性理论、极限理论、函数的连续性理论、微积分理论、级数理论。能应用所学的函数理论分析、解决实际问题。
三、考试范围
(一)实数与函数
1.实数的分类与主要性质,绝对值与不等式(A)
不足近似和过剩近似及其应用(B)
2.区间、邻域、确界的概念(A)
确界原理(A)
3.函数的相关概念、表示法(A)
函数的四则运算、复合、反函数(B)
函数的图象(C)
初等函数(C)
4.四类具有特殊性质的函数(B)
(二)数列极限
1.极限思想(B)
数列极限概念(A)
2.收敛数列的性质(A)
收敛数列的四则运算法则(B)
一些常见的极限(A)
子列及其性质(A)
3.单调有界定理、柯西准则及其应用(A)
(三)函数极限
1.各种类型的函数极限的概念(A)
2.函数极限的性质及其应用(A)
3.归结原理、柯西准则及其应用(A)
4.两个重要极限(A)
5.无穷小与无穷大的概念、相互关系(B)
无穷小的比较(C)
等价无穷小及其应用(A)
函数的渐近线及其求法(A)
(四)函数的连续性
1.连续的概念(A)
间断点及其分类(B)
2.连续函数的局部性质和整体性质(A)
反函数与复合函数的连续性(A)
3.初等函数的连续性(B)
(五)导数和微分
1.导数的概念、几何意义(A)
2.求导法则(A)
3.参变量函数的求导法则(A)
4.微分概念、微分的运算法则(A)
微分在近似计算的应用(B)
5.高阶导数与高阶微分的概念、求法(A)
Leibniz公式(B)
高阶微分(B)
(六)微分中值定理及其应用
1.罗尔定理、拉格朗日定理与函数的单调性(A)
2.柯西中值定理(A)
3.泰勒公式及其应用(A)
常用的几个函数的马克劳林展式(A)
4.洛比达法则及其应用(A)
5.函数极值的存在性及求法、最值及其应用(A)
6.函数的凸性和拐点(B)
7.函数的图形讨论(B)
(七)实数的完备性
1.区间套定理、柯西准则、聚点定理、有限覆盖定理(A)
完备性定理的等价性(B)
2.区间上连续函数的性质的证明(B)
(八)不定积分
1.原函数与不定积公的概念、性质(A)
基本积分公式(A)
2.分部积公法与换元积分法(A)
3.有理函数的不定积分(A)
简单无理函数与三角函数的不定积分(B)
(九)定积分
1.定积分的定义(B)
2.牛顿-莱布尼茨公式(A)
3.小和与大和的概念(B)
定积分存在的条件(B)
可积函数的分类(A)
4.定积分的性质与积分中值定理(A)
5.变限积分及其性质(A)
第二积分中值定理(C)
定积分的换元法与分部积分法及其应用(A)
泰勒公式的积分型余项(B)
6.上和与下和的性质、积分存在的充分必要条件(B)
(十)定积分的应用
1.求平面图形的面积(A)
2.求截面面积已知的立体图形的体积、旋转体的体积(A)
3.平面曲线的弧长(A)
曲率(C)
4.微元法、求旋转曲面的面积(A)
5.利用定积分求液体的静压力、引力、变力做功(A)
(十)反常积分
1.反常积分及其收敛性的概念(B)
2.无穷积分的性质及其收敛判别法(A)
3.瑕积分的性质及其敛散性判别法(A)
(十二)数项级数
1.数项级数,部分和,收敛与发散,余项等概念(B)
柯西收敛准则,收敛级数的性质(A)
2.正项级数及其收敛判别法(A)
3.一般项级数的收敛判别法(A)
(十三)函数列与函数项级数
1.函数列与函数项级数的概念(B)
收敛与一致收敛的概念,函数级数的收敛域(A)
函数列与函数项级数一致收敛的判别法(A)
2.一致收敛函数列和函数项级数的性质(A)
(十四)幂级数
1.幂级数的收敛区间,收敛半径(B)
幂级数的性质(A)
2.幂级数的泰勒展开和麦克劳林展开式(A)
基本初等函数的幂级数展开(A)
3.复变量的指数函数,欧拉公式(C)
(十五)傅立叶级数
1.三角级数,傅立叶级数的概念(C)
以2为周期的函数的傅立叶级数的展开式(A)
2.以2l为周期的函数的傅立叶级数展开(A)
(十六)多元函数的极限于连续
1.多元函数
平面点集的相关概念(B)
柯西准则,区域套定理,聚点定理(B)
多元函数的概念(B)
2.二元函数的极限(A)
3.二元函数的连续性及其性质(A)
(十七)多元函数的微分学
1.多元函数的偏导数和全微分的概念,联系;可微的条件;偏导数的应用(A)
全微分的几何意义(B)
2.多元复合函数的偏导数与全微分(A)
3.方向导数与梯度的概念,计算方法(B)
4.高阶偏导数,中值定理及泰勒公式(A)
二元函数的极值(A)
(十八)隐函数
1.隐函数的概念(B)
隐函数偏导数和高阶偏导数(A)
2.隐函数组的概念,存在性(A)
3.隐函数的几何应用(A)
4.用拉格朗日乘数求条件极值(A)
(十九)含参量积分
1.含参量积分的概念(B)
含参量积分的连续性和可导性(A)
2.含参量反常积分的性质,收敛判别法(A)
3.Г函数和В函数的定义,性质及其应用(B)
(二十)曲线积分
1.第一型曲线积分的概念与求法(A)
2.第二型曲线积分的概念与计算(A)
(二十一)重积分
1.平面图形的内,外面积;二重积分的定义、可积条件、性质(A)
2.化二重积分为累次积分(A)
用二重积分计算曲面的面积(B)
3.格林公式,曲线积分与路径的无关性(A)
4.二重积分的变量变换,用极坐标计算二重积分(A)
5.三重积分的定义(B)
三重积分的计算(A)
6.三重积分的简单应用(B)
(二十二)曲面积分
1.第一型曲线积分的概念、计算(A)
2.曲面的侧(B)
第二型曲面积分的定义、性质、计算(A)
两类曲面积分之间的关系(B)
3.高斯公式与斯托克斯公式及其应用(A)
四、主要教材及参考书
1.教材:
华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2001.
2.主要参考书
[1]陈传璋.数学分析[M].北京:人民教育出版社,1992.
[2]Б.П.吉米多维奇.数学分析习题集[M].北京:人民教育出版社,1997.
[3]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993.
五、说明
对知识层次的要求含义是,A:掌握;B:理解;C:了解。
点击【2015年五邑大学考研大纲及参考书目】查看更多考研大纲。
【相关阅读】
研究生招生专业索引
2015年全国各学校考研大纲汇总
友情提示: 考研信息数量巨大,整理过程中难免出错,欢迎广大研友指正。此外很多历史数据已无处查找,所以为保证考研信息的完整性,考研网真诚欢迎广大研友帮忙补充信息,可回复评论或发送内容至http://bbs.kaoyan.com/f3p1。 本文系考研网精心整理,转载请注明出处。 |
- 2021-10-01.........
- 2021-03-01南京财经大学812
- 2020-10-21求国际商务资料
- 2020-07-21美学
- 2022-01-16安师大
- 2020-04-03浙大材料科学基础第1前辈的经验分享十初试复试
- 2020-04-03浙大教育学综合高分学长的经验分享
- 2020-04-03浙大832机械设计基础最新复试初试资料
- 2020-04-03浙大药学基础综合第1学姐的经验分享
- 2020-04-0321浙大法学专业硕士高分学长分享资料