合肥工业大学数学学院导师介绍:檀结庆
基本信息 姓 名 檀结庆 职 称 教授 职 务 合肥工业大学国际合作与交流处处长,教授,博士生导
基本信息
姓 名 檀结庆
职 称 教授
职 务 合肥工业大学国际合作与交流处处长,教授,博士生导师
电子邮箱 jqtan@mail.hf.ah.cn , jqtan@joics.com
联系方式 230009 安徽省合肥市屯溪路193号合肥工业大学应用数学研究所(个人网页:http://www1.hfut.edu.cn/brief/isciais2005/tjqc/index.php )
教学工作
讲授本科生课程:
数学分析(精品课程)、高等数学、线性代数、概率论与数理统计、计算方法、数值分析(双语)
讲授硕士研究生课程:
论文选读、广义Padé逼近、有理逼近及应用、数值逼近基础、多元函数插值法、多元函数构造理论、现代分析基础、非线性逼近的理论与方法、样条函数方法、数值分析
讲授博士研究生课程:
小波分析、自由曲线曲面造型技术
研究方向
非线性数值逼近理论与方法,科学计算,小波理论,计算机辅助几何设计,计算机图形学,图象处理技术
教学、科研工作
(1)合肥工业大学校立基金项目:“有理插值与逼近的研究”(1991)
(2)国家自然科学基金项目:“多元分叉连分式样条与非线性(奇异)样条的理论与应用”(19501011) (1996-1998)
(3)合肥工业大学校立基金项目:“数值分析中的非线性方法”(1996)
(4)机械工业部高校跨世纪优秀人才专项基金项目:“多元非线性插值与逼近的理论与方法研究”(1997-1999)
(5)国家教委留学回国人员基金项目:“多元超几何级数的研究”(1997-1999)
(6)教育部资助优秀年轻教师基金项目:“基于连分式的非线性方法及其在科学与工程计算中的应用”(2000-2002)
(7)教育部《高等学校骨干教师资助计划》项目:“基于连分式的非线性曲线与曲面的构造、表示及可视化研究”(2000-2001)
(8)国家自然科学基金项目:“连分式方法及其在CAGD与图形图象处理中的应用”(10171026)(2002-2004)
(9)安徽省自然科学基金项目:“以连分式为平台的有理插值方法及其应用”(03046102)(2003-2005)
(10)合肥工业大学创新群体基金项目:“现代非线性计算技术及其应用”(2004-2006)
(11)国家自然科学基金项目:“多元有理插值与逼近的理论、方法及其在图形图象处理中的应用研究”(60473114)(2005-2007)
(12)安徽省教育厅科技创新团队基金项目:“现代非线性计算技术及其应用”(2005-2007)
(13)华夏英才出版基金:“连分式理论及其应用”(2004-2005)
(14)国家自然科学基金国际合作与交流项目:“International Symposium on Computing and Its Applications in Information Science”(2005)
(15)安徽省自然科学基金项目:“非线性数值方法及其在几何造型与信息处理中的应用研究”(070416273X)(2007-2008)
(16)国家自然科学基金国际合作与交流项目:“The Third Korea-China Joint Conference on Geometric and Visual Computing”(2007)
(17)国家自然科学基金项目:“非线性几何设计与计算”(60773043)(2008-2010)
(18)教育部博士点基金项目:“有理插值新方法及其在图形图像中的应用研究”(20070359014 ) (2008- 2010)
论文著作
专 著
多元有理逼近方法(与朱功勤、顾传青合著), 中国科学技术出版社, 北京, 1996.
连分式理论及其应用(与唐烁、朱晓临、胡敏合著),科学出版社,北京,2007.
国际会议论文集编辑(与王仁宏合编)Advances in Information and Computational Science, Press of University of Science and Technology of China,2005.
翻 译
《数学百科全书》第一、三、四卷 若干词条(与王仁宏合译),科学出版社,1994
主 要 论 文
1. Jieqing Tan, Ping Jiang, Marr-type wavelets of high vanishing moments, Applied Mathematics Letters, 20(2007)1115-1121. (SCI收录,IDS Number: 224EW, EI 收录, Accession number: ************) [PDF]
2. Min Hu, Jieqing Tan, Qianjin Zhao, Adaptive rational image interpolation based on local gradient features,Journal of Information and Computational Science, 4(1)2007, 59-67. (EI 收录, Accession number: ************)
3. Benyue Su and Jieqing Tan, Circular Trigonometric Hermite Interpolation Polynomials and Applications, Journal of Information & Computational Science, 4(2)(2007), 709-720. (EI 收录, Accession number: ************)
4. B.Y. Su, J.Q. Tan, Sweeping surface generated by a class of generalized quasi-cubic interpolation spline, Lecture Notes in Computer Science, Springer, 2007, 4488, 41-48. (EI 收录, Accession number:************, ISTP收录,IDS Number: BGH84) [PDF]
5. Qianjin Zhao, Jieqing Tan, Block based bivariate blending rational interpolation via symmetric branched continued fractions, Numerical Mathematics, A Journal of Chinese Universities (English Series), 16(1), 63-73, 2007. [PDF]
6. 王强、檀结庆、胡敏,基于有理样条的图像缩放算法,计算机辅助设计与图形学学报,19(10)(2007),1348-1351. [PDF]
7. Qianjin Zhao and Jieqing Tan, Block Based Newton-like Blending Interpolation, J. Comput. Math., 24(4)(2006), 515-526. (SCI收录、EI收录,IDS Number: 068VO)[PDF]
8. Annie Cuyt, Jieqing Tan and Ping Zhou, General multivariate Pade approximants to Pseudo- multivariate functions, Math. Comp. 75 (2006), 727-741.[PDF] (SCI收录,IDS Number: 031SC)
9. Qianjin Zhao and Jieqing Tan, Block based Thiele-like blending rational interpolation. J. Comput. Appl. Math ., 195(2006) 312-325. [PDF](SCI收录、EI收录,IDS Number: 066VI)
10. Zhao Qian-jin and Tan Jie-qing, The limiting case of blending differences for bivariate blending continued fraction expansions, Northeastern Mathematical Journal, 22(4)(2006),404-414. [PDF]
11. Min Hu and Jieqing Tan, Adaptive osculatory rational interpolation for image processing. J. Comput. Appl. Math. , 195(2006) 46-53 . [PDF](SCI收录、EI收录,IDS Number: 066VI)
12. Benyue Su, Jieqing Tan, Geometric modeling for interpolation surfaces based on blended coordinate system, Lecture Notes in Computer Science 4270, 222-231,2006. [PDF] ( SCI收录、EI收录,IDS Number: BFG65)
13. Ping Jiang and Jieqing Tan, The Subdivision Algorithm for the Generalized Ball Curves, Journal of Information & Computational Science , 3(1)(2006),21-31.[PDF] (EI收录)
14. Qianjin Zhao and Jieqing Tan, Block based Lagrange-Thiele-like blending rational interpolation, Journal of Information & Computational Science , 3(1)(2006),167-177.[PDF] (EI收录)
15. Su Ben-yue, Tan Jie-qing, A family of quasi-cubic blended splines and applications, J. Zhejiang Univ. SCIENCE A, 7(9)(2006) 1550-1560.[PDF] (EI收录)
16. Qiang Wang and Jieqing Tan, Shape preserving piecewise rational biquartic surfaces, Journal of Information & Computational Science , 3(2)(2006),295-302.[PDF] (EI收录)
17. 檀结庆、江平,区间 Ball 曲线的边界及降阶,计算机辅助设计与图形学学报, 18(3)(2006) 378-384.[PDF](EI收录)
18. 江平、檀结庆, Wang-Said 型广义 Ball曲线的降阶,软件学报, Vol. 17 (增刊)(2006) 93-102. [PDF] (EI收录)
19.赵前进、胡敏、檀结庆,基于局部梯度特征的自适应多结点样条函数插值,计算机研究与发展, 43(9) 2006,1537-1542.[PDF](EI收录)
20. Ping Jiang, Hongyi Wu, Jieqing Tan, The dual functionals for the generalized Ball basis of Wang-Said type and basis transformation formulas, Numer. Math. A J. Chin.Univ., 15(3)2006, 248-256. [PDF]
21. Jieqing Tan and Ping Zhou, On the finite sum representations of the Lauricella function , Advances in Computational Mathematics, 23(4)(2005),333-351.[PDF](SCI收录, IDS Number:914JZ)
22. Xing Huo and Jieqing Tan, Bivariate rational interpolant in image inpainting, Journal of Information & Computational Science, 2(3)(2005),487-492. [PDF](EI收录)
23. Jieqing Tan and Qianjin Zhao, Successive Newton-Thiele's rational Interpolation, Journal of Information & Computational Science, 2(2)(2005),295-301. [PDF](EI收录)
24. Ping Jiang and Jieqing Tan , Degree reduction of disk Said-Ball curves, Journal of Computational Information Systems, 1(3)2005,389-398.[PDF](EI收录)
25. Min Hu, Jieqing Tan, Feng Xue , A New Approach to the Image Resizing Using Interpolating Rational-Linear Splines by Continued Fractions, Journal of Information & Computational Science,2(4)(2005), 681-685. [PDF](EI收录)
26. Qiang Wang and Jieqing Tan, Rational quartic spline involving shape parameters, Journal of Information & Computational Science, 1(1)2004, 131-134. [PDF]( EI收录)
27. Jieqing Tan and Ping Jiang, A Neville-like method via continued fractions, J. Comput. Appl. Math . 163(1)(2004), 219-232. [PDF] (SCI收录、EI收录、ISTP收录,IDS Number:772HJ)
28. Huanxi Zhao, Gongqin Zhu and Jieqing Tan, A Sleszynski-Pringsheim theorem for vector valued continued fractions and its optimal error bounds, J. Comput. Appl. Math..163(1)(2004),343-350.(SCI收录、EI收录、ISTP收录,IDS Number:772HJ)[PDF]
29. 胡敏、檀结庆、刘晓平,用二元向量有理插值实现彩色图象缩放的方法,计算机辅助设计与图形学学报,16(11)(2004)1496-1500. [PDF]( EI收录)
30. 胡敏、檀结庆, 保持轮廓清晰的有理-线性彩色图象内插放大方法,系统仿真学报,16(12)(2004),2857-2859. [PDF]( EI收录).
31. Min Hu and Jieqing Tan, Image reconstruction from regular and non-regular point sets based on multivariate blending rational interpolation, in: Proceedings of 8th International Conference on CAD/Graphics, Enhua Wu,Hanqiu Sun and Dongxu Qi Eds. , Welfare Printing Limited, Macau (2003)335-336. (ISTP收录)
32. Jieqing Tan, Computation of vector valued blending rational interpolation. Numer. Math. A J. Chinese Univ.,12(1) (2003), 91-98. [PDF]
33. Min Hu and Jieqing Tan, Image compression and reconstruction based on bivariate Interpolation by continued fractions, Proceedings of Second International Coference on Image and Graphics, Wei Sui ed., SPIE Vol. 4875 (2002) 87-92. ( EI收录,ISTP收录)
34. Jieqing Tan and Shuo Tang, Algorithms of composite rational interpolation based on continued fractions, Proceedings of the First International Congress of Mathematical Software, Arjeh M. Cohen, Xiao-Shan Gao, Nobuki Takayama eds., World Scientific, New Jersey• London• Singapore• Hong Kong, 2002,72-81.(ISTP收录)
35. Jieqing Tan, Baorui Song and Gongqin Zhu, Vector valued rational interpolants over triangular grids, Computers and Mathematics with Applications, 44(10-11)(2002), 1357-1367.[PDF](SCI收录, EI收录,IDS Number: 620JT)
36. Jieqing Tan and Shuo Tang, Composite schemes for multivariate blending rational interpolation, J. Comp. Appl. Math. 144(1-2)(2002), 263-275. [PDF](SCI收录、EI收录,ISTP收录,IDS Number: 564BX)
37. Jieqing Tan, The limiting case of Thiele’s interpolating continued fraction expansion, J. Comput. Math., 19(4)2001, 433- 444.[PDF](SCI收录、EI收录,IDS Number: 461DM)
38. Jieqing Tan and Xiaoping Liu, Rational surfaces approximately reconstructed by continued fractions, Proceedings of The 7th International Conference on Computer Aided Design and Computer Graphics, Kunming, China, International Academic Publishers, Beijing, 2001. (ISTP收录, IDS Number: BT30L)
39. Jieqing Tan, Rational curves constructed by continued fractions, Proceedings of The 4th International Conference on Computer Aided Industry Design and Conceptual Design, Jinan, China, International Academic Publishers, Beijing, 2001
40. Liu XP, Luo YT, Tan JQ, Huang QY and Wu YC, Research on modeling of transport simulation based on systematic todamak concept design, Proceedings of The 7th International Conference on Computer Aided Design and Computer Graphics, Kunming, China, International Academic Publishers, Beijing, 2001. (ISTP收录, IDS Number: BT30L)
41. Jieqing Tan, A compact determinantal representation for inverse differences, 数学研究与评论, 20(1) 2000,32—36. [PDF]
42. 朱功勤、檀结庆、王洪燕,预给极点的向量有理插值及性质,高校计算数学学报,
22(2)2000,97—104。[PDF]
43. Jieqing Tan and Yi Fang,Newton-Thiele’s rational interpolants, Numerical Algorithms, 24(2000), 141-157.[PDF](SCI 收录,ISTP收录, IDS Number: 337EY)).
44. Jieqing Tan and Shuo Tang, Bivariate composite vector valued rational interpolation, Mathematics of Computation, 69(2000), 1521--1532. [PDF] (SCI收录,IDS Number: 357FM)
45. Gongqin Zhu and Jieqing Tan , A note on matrix valued rational interpolants, J. Comp. Appl. Math.,110 (1999), 129—140. [PDF] (SCI收录、EI收录,IDS Number: 246FX)
46. Cuyt, K. Driver, J. Tan and B. Verdonk, Exploring multivariate Pade approximants for multiple hypergeometric series. Advances in Comput. Math. 10(1999) 29-49. [PDF] (SCI 收录,IDS Number: 165FR)
47. Jieqing Tan, Bivariate rational interpolants with rectangle-hole structure, J. Comput. Math. 17(1)(1999)1-14. (SCI收录、EI收录,IDS Number: 162QX)[PDF]
48. Cuyt, K. Driver, J. Tan and B. Verdonk, A finite sum representation of the Appell series F (a,b,b;c;x,y), J. Comput. Appl. Math., 105(1999) 213-219. [PDF](SCI收录、EI收录,ISTP收录, IDS Number: 202ZD)
49. Jieqing Tan, Bivariate blending rational interpolants, Approximation Theory and Its Application. 15(2) (1999) 74-83.
50. Jieqing Tan and Yi Fang, General frames for bivariate interpolation, 数学研究与评论, 19(4) 1999,681—687.[PDF]
51. Jieqing Tan, Algorithms for lacunary vector valued rational interpolants, Numer. Math. A J. Chin. Univ., 7(2)(1998), 169-182.[PDF]
52. Jieqing Tan, Interpolating rational splines in three dimensional space, 数学研究与评 论,18(2) (1998), 181-187. [PDF]
53. Jieqing Tan and Gongqin. Zhu, General framework for vector valued interpolants, in: Proceedings of Third China-Japan Seminar on Numerical Mathematics, Zhong-Ci Shi ed., Science Press, Beijing/New York (1998) 273-278.
54. Jieqing Tan and Shuo Tang, Vector valued rational interpolants by triple branched continued fractions, Appl. Math. -JCU., 12 B(1)(1997), 99-108.[PDF]
获奖情况
科研与教学奖励
(1)机械工业部高校跨世纪学科带头人培养对象(第一批人选, 1995)
(2)安徽省高校跨世纪学科带头人培养对象(第一批人选, 1996)
(3)1995年度中国机械工业青年科技专家
(4)“优化工科数学体系,全面培养学生能力”2001年获合肥工业大学教学成果三等奖
(5)“优化工科数学体系,全面培养学生能力”2001年获安徽省教学成果三等奖
(6)“Newton-Thiele's rational interpolants” 2003 年获安徽省第四届 自然科学优秀学术论文一等奖
(7)“有理插值与逼近理论及其应用”2004年获安徽省自然科学三等奖
(8)“培养一流教学队伍,创建国家精品课程”获合肥工业大学2004年度优秀教学成果一等奖
(9)“探索教学新模式,着力提高学生的应用能力与创新能力”获安徽省2004年度优秀教学成果一等奖
(10)国务院政府特殊津贴(2004年度)
(11)安徽省高校学科拔尖人才(2005)
(12)“On the finite sum representations of the Lauricella function FD” 2006年获安徽省第五届自然科学优秀学术论文二等奖
- 2021-05-08物理化学真题资料-适用于化工类各专业
- 2021-04-19胜明考研——合肥工业大学830电路基础复习经验分享
- 2021-02-022019年合肥工业大学mti翻译硕士英语笔译真题回忆
- 2020-07-28合肥工业大学2018年机械原理(815)初试试题回忆版
- 2020-05-05送!合工大通信,信号专业考研真题!!(加精啊!)
- 2020-02-24仪器学院学弟学妹看过来
- 2020-02-072011年合肥工业大学有机化学二真题
- 2019-09-052014合肥工业大学初试机械原理试题完整回忆版
- 2019-09-03工商管理847企业管理学
- 2019-08-08合工大19年802经济学真题