研招网 > 安徽研招网 > 安徽师范大学 > 导师介绍

安徽师范大学数学计算机科学学院导师介绍:鲁世平


  姓名:鲁世平
  性别:男
  出生年月:196210
  职称:教授
  学院:数学计算机科学学院
  研究方向:生态数学、泛函微分方程理论和奇异摄动理论
  
  鲁世平,男,1962年10月出生,数计学院教授、博士、硕士生导师,校级重点扶持创新团队“应用微分方程”负责人。1993.7—1996.7在安徽大学攻读硕士学位。1996.7—2001.3安徽师范大学数计学院任教, 并于2000.7破格晋升副教授。2001.3—2004.2在职攻读北京理工大学博士学位。2004.3获博士学位,毕业回校工作,2004.10破格晋升教授.
  
  二、所授课程
  1.本科生:《数学分析》、《高等数学》、《工程数学》和《常微分方程》
  2.研究生:《常微分方程补充教程》、《微分方程边值问题》、《微分方程几何理论》、《泛函微分方程》和《非线性泛函分析》
  
  三、研究方向
  生态数学、泛函微分方程理论和奇异摄动理论。
  
  四、承担课题
  [1]泛函微分方程边值问题,主持,安徽省教育厅项目,1998.1-2001.12.
  [2]中立型种群模型周期正解存在性,主持,安徽省教育厅项目,2002.1-2004,12.
  [3]泛函微分方程周期解问题,主持,安徽省教育厅重点项目,2004.1-2006.12.
  [4]微分方程边值问题,主要参与人, 国家自然科学资金,2003.1-2005.12.
  
  五、主要研究论文
  [1] Shiping Lu and Weigao Ge, On the existence of periodic solutions for neutral functional differential equation, Nonlinear Analysis, TMA,54(2003),1285-1306(SCI, EI收录).
  [2] Shiping Lu and Weigao Ge, Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument, Nonlinear Analysis, TMA, 56(2004)501-514(SCI,EI收录).
  [3] Shiping Lu and Weigao Ge, On the existence of m-point boundary value problem at resonance for higher order differential equation, J.Math.Anal.Appl.287(2003)522-539.(SCI,EI收录)
  [4] Weigao Ge, On the existence of periodic solutions for Liénard equation with a deviating argument[J], J. Math. Anal. Appl., 2004, 289(1): 241-243. (SCI收录)
  [5] Shiping Lu, Weigao Ge, Periodic solutions for a kind of second order differential equations with multiple deviating arguments[J], Applied Mathematics and Computation,2003, 146: 195-209[J. (SCI收录)
  [6] Shiping Lu, Weigao Ge,On the existence of positive periodic solutions for function differential differential equation with multiple deviating arguments [J], J. Math. Anal. Appl., 2003, 280(2): 321-333. (SCI收录)
  [7] Shiping Lu, Weigao Ge, Problems of periodic solutions for a kind of second order neutral functional differential equation[J], Applicable Analysis, 2003, 82(5): 393-410.
  [8] Shiping Lu, Weigao Ge, Periodic solutions for a kind of higher order neutral functional differential equation[J], J. Applied Mathematics and Mechanics, 2002, 23(12): 1421-1428. (SCI收录)
  [9] Shiping Lu, Singularly perturbed boundary value problem for retarded functional differential equation with nonlinear boundary conditions[J], J. Applied Mathematics and Mechanics, 2003, 24(12): 1415-1422. (SCI收录)
  [10] Shiping Lu and Weigao Ge, Existence of positive periodic solutions for neutral population model with multiple delays[J], Applied Mathematics and Computation, 2004,153:885-902. (SCI收录)
  [11] Shiping Lu, Weigao Ge Zuxiou Zheng, An existence result of periodic solutions to first order neutral functional differential equations in the critical case [J], J. Math. Anal. Appl., 2004,293(2):462-475. (SCI收录)
  [12] Shiping Lu, Weigao Ge, Existence of positive periodic solutions for neutral logarithmic population model with multiple delays[J], J. Computational and Applied Mathematics,2004,166(2):371-383. (SCI收录)
  [13] Shiping Lu, Weigao Ge, Zuxiou Zheng, Periodic solutions for a kind of Rayleigh equation with a deviating argument[J], Applied Math.Lett., 2004,17(4):443-449。 (SCI收录)
  [14] Shiping Lu, Weigao Ge, Zuxiou Zheng, Periodic solutions to a neutral functional differential equation with deviating arguments[J], Applied Mathematics and Computation,2004,152(1):17-27.. (SCI收录)
  [15] 鲁世平, 葛渭高,一类二阶n-维中立型微分系统周期解问题[J], 数学学报, 2003, 46(3): 601-610. (国家重点)
  [16] 鲁世平, 葛渭高,一类具偏差变元的二阶微分方程的周期解存在性问题[J], 数学学报, 2002, 45(4): 811-818. (国家重点)
  [17] 鲁世平, 葛渭高, 郑祖庥, 具偏差变元的Rayleigh方程周期解问题[J],数学学报,2004, 47(2):299-304. (国家重点)
  [18] 鲁世平, n阶泛函微分方程边值问题[J], 数学研究与评论,2000,20(3):411-415(国家重点)
  [19] Lu Shiping, Boundary value problems with integro condition for retarded functional differential equations[J], Ann. Of Diff. Eqs., 2001, 17(4): 329-335. (国家重点)
  [20] 鲁世平,奇摄动非线性时滞微分方程边值问题[J], 数学研究与评论,2003,23(2):304-308. (国家重点)
  [21] 鲁世平, n阶脉冲微分方程边值问题[J], 数学研究与评论,2001,21(3):415-420. (国家重点)
  [22] Lu Shiping, A kind of singularly perturbed boundary value problem for nonlinear volterra functional differential differential equations[J], Appl. Math. Chinese Univ. Ser. B, 2000, 15(2): 137-142. (国家重点)
  [23] 鲁世平, 一类中立型泛函微分方程周期解问题[J], 数学杂志, 2000, 20(2), 151-155. (国家重点)
   *如果发现导师信息存在错误或者偏差,欢迎随时与我们联系,以便进行更新完善。联系方式

考研帮最新资讯更多

考研帮地方站

你可能会关心:

查看目标大学的更多信息

分数线、报录比、招生简章
一个都不能错过

× 关闭